ID : 516

viewed : 152

Tags : PythonPython Random

97

In Python, we can easily generate random numbers using Random and Numpy libraries.

Selecting random elements from a list or an array by the probable outcome of the element is known as Weighted Random Choices. The selection of an element is determined by assigning a probability to each element present. Sometimes more than one element is also selected from the list of the elements made.

In this tutorial, we will discuss how to generate weighted random choices in Python.

`random.choices()`

Function to Generate Weighted Random ChoicesHere, the `random`

module of Python is used to make random numbers.

In the `choices()`

function, weighted random choices are made with a replacement. It is also known as the weighted random sample with replacement. Also, in this function, weights play an essential role. Weights define the probable outcome of the selection of each element. There are two types of weights:

- Relative Weights
- Cumulative Weights

The `weights`

parameter defines the relative weights. The probable outcome is different for each element in the list. If the probable outcome for each element has been fixed using the relative weights, then the selections are made based on the relative weights only.

Here is an example:

`import random List = [12, 24, 36, 48, 60, 72, 84] print(random.choices(List, weights=(30, 40, 50 , 60, 70, 80, 90), k=7)) `

Here each element in the list is given its own weight i.e, probable outcome. Also, k in the above example is the number of elements needed from the given list.

Output:

`[60, 84, 36, 72, 84, 84, 60] `

Here, the total sum of weights is not 100 because they are relative weights and not percentages. The number 84 has occurred three times as it has the highest weight of all weights. So the probability of its occurrence will be the highest.

The `cum_weight`

parameter is used to define the cumulative weights. The cumulative weight of an element is determined by the weight of the preceding element plus the relative weight of that element. For example, the relative weights [10, 20, 30, 40] are equivalent to the cumulative weights [10, 30, 60, 100]

Here is an example:

`import random List = [13, 26, 39, 52, 65] print(random.choices(List, cum_weights=(10, 30, 60, 100, 150), k=5)) `

Output:

`[65, 65, 39, 13, 52] `

Here also, the number 65 occurs more than any other number as it has the highest weight.

`numpy.random.choice()`

Function to Generate Weighted Random ChoicesFor generating random weighted choices, Numpy is generally used when a user is using the Python version less than 3.6.

Here, `numpy.random.choice`

is used to determine the probability distribution. In this method, random elements of 1D array are taken, and random elements of a numpy array are returned using the `choice()`

function.

`import numpy as np List = [500,600,700,800] sNumbers = np.random.choice(List, 4, p=[0.10,0.20,0.30,0.40]) print(sNumbers) `

Here, the probability should be equal to 1. The number 4 represents the size of the list.

Output:

`[800 500 600 800] `