There's a flag for that:
In [11]: df = pd.DataFrame([["foo1"], ["foo2"], ["bar"], [np.nan]], columns=['a']) In [12]: df.a.str.contains("foo") Out[12]: 0 True 1 True 2 False 3 NaN Name: a, dtype: object In [13]: df.a.str.contains("foo", na=False) Out[13]: 0 True 1 True 2 False 3 False Name: a, dtype: bool
See the str.replace
docs:
na : default NaN, fill value for missing values.
So you can do the following:
In [21]: df.loc[df.a.str.contains("foo", na=False)] Out[21]: a 0 foo1 1 foo2